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Abstract

It is shown that an abrupt change in the innovation variance of an integrated process can
generate spurious rejections of the unit root null hypothesis in routine applications of Dickey–
Fuller tests. We develop and investigate modi6ed test statistics, based on unit root tests of Perron
for a time series with a changing level, or changing intercept and slope, which are applicable
when there is a change in innovation variance of an unknown magnitude at an unknown location.
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1. Introduction

A few authors have analysed the possibility of breaks in the variance of a time
series. For example, Wichern et al. (1976) considered maximum likelihood estima-
tion of an unknown break point in the variance of a 6rst order autoregression, while
Hsu (1977) proposed tests for the existence of a break, at an unknown point in
time, in the variance of a sequence of independent normal random variables. Incl>an
(1993) used Bayesian methods to detect multiple breaks in variance in a time se-
ries. However, relatively little attention has been paid to the possibility of a break in
the innovation variance of an integrated process, and to the impact of such a break
on testing the null hypothesis of a unit autoregressive root. An exception is Hamori
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and Tokihisa (1997). These authors considered Dickey–Fuller tests based only on the
regression with no constant and trend, concentrating on the case of an increase in
innovation variance, reporting a moderate tendency to spuriously reject the unit root
hypothesis.
The no constant, no trend model is of very limited practical value, as it implies

that, under the alternative hypothesis of trend stationarity, the generating process is
known to have mean zero. Unfortunately, the results reported by Hamori and Tok-
ihisa for the simple model turn out to be unreliable predictors, both qualitatively
and quantitatively, of what is found when either a constant or a linear trend is
incorporated into the Dickey–Fuller regression. In Section 2 of the paper, we
analyse the former case in detail and note simulation evidence of very similar
conclusions for the latter. In short, we 6nd quite severe spurious rejections of the
unit root null hypothesis when there is a relatively early decrease in the innovation
variance. 1

Having demonstrated the phenomenon of spurious rejections by Dickey–Fuller tests
in the presence of an innovation variance shift, a result which complements the
analysis of a trend shift in Leybourne et al. (1998), the remainder of the paper
is devoted to the development of modi6ed tests that allow for a possible change
in innovation variance at an unknown point in time. Section 3 of the paper dis-
cusses the estimation of the break point when a break occurs and also considers the
behaviour of break point estimators when there is no break, while Section 4
develops a modi6ed Perron-style unit root test and derives the asymptotic null
distribution of this test statistic in the presence of a change in variance. We assess
the 6nite sample size and power of the new test through simulation experiments. Sec-
tion 5 discusses the extension to the case where a linear trend is incorporated in the
model.

2. Spurious rejections in Dickey–Fuller tests

Consider a DGP given by

yt = � + zt ; t = 1; : : : ; T; (1)

zt = �zt−1 +
p−1∑
j=1

�jGzt−j + �t ; �t = t�t ; (2)

1 In a footnote, Hamori and Tokihisa appear to suggest, on theoretical grounds, that for their simple
model a decrease in variance will lead to under-rejection of the null hypothesis. In fact, in simulations, not
reported here, of that model based on series of 100 observations, we were unable to con6rm that prediction,
6nding instead a modest tendency to over-reject, particularly for relatively early breaks. Again, however, the
phenomenon is far less severe for the simple model than occurs for the more widely used models discussed
in Section 2.



T.-H. Kim et al. / Journal of Econometrics 109 (2002) 365–387 367

where lagged changes are incorporated in (2) to account for serial correlation, all roots
of 1−∑p−1

j=1 �jxj = 0 have modulus greater than unity, 2t is de6ned by

2t = 211[t6 �∗T ] + 221[t ¿ �∗T ] (3)

and �t is assumed to satisfy the following assumption:

Assumption 1. �t is a martingale diJerence sequence and satis6es E(�2t |�t−1; : : :) = 1
and E(|�t |4+�|�t−1; : : :) = �¡∞ for some �¿ 0.

Thus there is a break in the variance of the innovation process �t at time �∗T , the
variance changing from 21 to 22. The t-ratio variant of the Dickey–Fuller test is based
on a 6tted autoregression. The asymptotic distribution of this statistic under the null
�=1 will be derived for illustration for the case where the Dickey–Fuller regression in-
cludes a constant but no trend and p=1. That limiting distribution, which involves both
the break fraction �∗ and the ratio of the innovation standard deviations 2=1, leads to a
prediction that the test will spuriously reject the unit root null hypothesis when there is
an abrupt decrease in innovation variance, most seriously so when the break is relatively
early.

2.1. Asymptotic null distribution of the Dickey–Fuller statistic

The t-ratio variant of the Dickey–Fuller statistic, denoted tO, in the case p = 1 for
testing �=1, with a constant term included, is based on estimating the OLS regression
model

yt = �+ �yt−1 + �t : (4)

The following theorem gives the asymptotic null distribution of tO under the DGP
(1)–(3).

Theorem 1. Under the DGP (1)–(3) with �= 1; p= 1; and Assumption 1;

tO ⇒ 1
{�∗ + (1− �∗)�2}1=2

a(�; �∗)
b(�; �∗)1=2

; (5)

where �= 2=1;

a(�; �∗) =
1
2
{W (1)2 − 1} − (�2 − 1)

1
2
{W (1)2 −W (�∗)2 − (1− �∗)}

− �(�− 1)W (�∗){W (1)−W (�∗)}
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Fig. 1. Asymptotic size of nom. 0.05 level t0-test with decrease in variance.

−
[∫ 1

0
W (r) dr + (�− 1)

{∫ 1

�∗
W (r) dr − (1− �∗)W (�∗)

}]

×[W (1) + (�− 1){W (1)−W (�∗)}];

b(�; �∗) =
∫ 1

0
W (r)2 dr + (�2 − 1)

∫ 1

�∗
W (r)2 dr

− 2�(�− 1)W (�∗)
∫ 1

�∗
W (r) dr + (�− 1)2(1− �∗)W (�∗)2

−
[∫ 1

0
W (r) dr + (�− 1)

{∫ 1

�∗
W (r) dr − (1− �∗)W (�∗)

}]2

:

Here W (r) is a standard Brownian motion process.

2.2. Simulation evidence

We simulated the limiting functionals given in Theorem 1, using 40,000 replications
and series of 5,000 Gaussian white-noise innovations, and thus computed the asymptotic
size of nominal 0.05-level Dickey–Fuller tests based on regression (4). Results for a
full range of break fractions �∗, and for various values of the standard deviations
ratio �6 1 are graphed in Fig. 1. These imply potentially serious spurious rejections
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when there is a relatively early decrease in innovation variance. 2 However, results not
reported here for the case �¿ 1 indicated no substantial deviation of asymptotic sizes
from the nominal 0.05-level.

3. Break estimation

In view of the spurious rejection problem associated with the Dickey–Fuller test
uncovered in the previous section, we now seek an alternative test that is valid in
the presence of a break in innovation variance. We do not assume that the loca-
tion of any break is known, but consider in this section the problem of estimat-
ing that location, proposing two possible estimators. While the problem of testing
for a break in mean at an unknown point has received considerable attention in the
literature, rather less attention has been paid to the problem of estimating the un-
known break point in mean: procedures that have been proposed and analysed in-
clude the MLE method (Picard, 1985; Bhattacharya, 1987; Fu and Curnow, 1990),
the LS method (Bai, 1993; Bai and Perron, 1998), the LAD method (Bai, 1995)
and the QMLE method (Bai et al., 1998; Nunes et al., 1995). We adopt the QMLE
method and the LS method to estimate the unknown break point in innovation
variance.

3.1. QMLE method

We begin by treating �t as if it is normally distributed with zero mean and
variance 2t in (2), (3). Then, the quasi-log likelihood is a function of �; 21
and 22, but we can concentrate this function by writing it as a function of � alone.
It can be shown that the negative of the concentrated quasi-log likelihood function is
proportional to

QT (�) = � ln 1(�)2 + (1− �) ln 2(�)2;

where

1(�)2 = (�T )−1
�T∑
1

�2t ; 2(�)2 = {(1− �)T}−1
T∑

�T+1

�2t : (6)

This objective function can be calculated only when we know �t . In reality, it is not
known and we modify the concentrated quasi-log likelihood function by replacing �t

2 To verify the applicability of these 6ndings in moderate-sized samples, we simulated series of T =
100 observations from the DGP (1)–(3), with � = 1; p = 1 and �t generated as standard normal, using
40,000 replications. Empirical sizes of nominal 0.05-level tests were virtually indistinguishable from those of
Fig. 1. As a check on the generality of this phenomenon, this experiment was repeated with a linear trend
term included in regression (4), and the usual Dickey–Fuller with trend critical values. The results for
rejection rates of nominal 0.05-level tests were both qualitatively and quantitatively similar to those for the
constant only case.
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with the residual et from the following OLS regression:

yt = �̂+ �̂yt−1 +
p−1∑
j=1

�̂jGyt−j + et : (7)

Let 0¡�1¡�2¡ 1. Then the break estimator is de6ned by the solution to the fol-
lowing minimisation problem:

�̂= argmin
�∈[�1 ;�2]

Q̂T (�);

Q̂T (�) = � ln ̂1(�)2 + (1− �) ln ̂2(�)2;

where

̂1(�)2 = (�T )−1
�T∑
1

e2t ; ̂2(�)2 = {(1− �)T}−1
T∑

�T+1

e2t : (8)

Once we obtain the break estimator �̂ in this manner, the respective variance estimators
are de6ned by

̂1(�̂)2 = (�̂T )−1
�̂T∑
1

e2t ; ̂2(�̂)2 = {(1− �̂)T}−1
T∑

�̂T+1

e2t : (9)

The following theorem, proved in Appendix A, demonstrates consistency of these
estimators.

Theorem 2. Suppose that �∗ ∈ (�1; �2). Under the DGP (1)–(3) with � = 1 and As-
sumption 1; we have (i) �̂− �∗=op(1); (ii) ̂1(�̂)2−21 =op(1); and (iii) ̂2(�̂)2−22 =
op(1); where �̂ is the QMLE estimator.

3.2. LS method

As in the QMLE method, we 6rst consider the estimation of a break fraction �∗

assuming that we observe �t , and then we relax this assumption later. The basic idea
is to transform the structural break in the variance of �t into a structural break in the
mean of �2t . De6ne �t = �2t − E(�2t ). Then, we have

�2t = 2t + �t ;

where 2t is given in (3). Hence, we have a structural break in the mean of �2t at time
�∗T . In this case, using the LS method suggested by Bai (1993) and Nunes et al.
(1995), the LS break estimator �̂ is de6ned as:

�̂= argmin
�∈[�1 ;�2]

ST (�);

ST (�) =
�T∑
1

{�2t − 1(�)2}2 +
T∑

�T+1

{�2t − 2(�)2}2;
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where 1(�)2 and 2(�)2 are given in (6). It can be shown that the above LS mini-
mization is equivalent to the following maximization problem:

�̂= argmin
�∈[�1 ;�2]

VT (�)2;

VT (�)2 = {�(1− �)}{2(�)2 − 1(�)2}2:

In the practically important case where �t is not observable, we use the residuals et
from regression (7). Then, the break estimator is de6ned by

�̂= argmin
�∈[�1 ;�2]

V̂ T (�)2;

V̂ T (�)2 = {�(1− �)}{̂2(�)2 − ̂1(�)2}2;

where ̂1(�)2 and ̂2(�)2 are given in (8). The variance estimators are again calculated
using the formulae in (9). The following theorem, proved in Appendix A, demonstrates
consistency of these estimators.

Theorem 3. Suppose that �∗ ∈ (�1; �2). Under the DGP (1)–(3) with � = 1 and As-
sumption 1; we have (i) �̂− �∗=op(1); (ii) ̂1(�̂)2−21 =op(1); and (iii) ̂2(�̂)2−22 =
op(1); where �̂ is the LS estimator.

In this LS approach, we can also show the limiting behaviour of the break estimator
�̂ when there is no break in the data generating process in (3); that is �∗ ∈{0; 1}. This
issue is addressed in the following theorem.

Theorem 4. Suppose that �∗ ∈{0; 1}. Under the DGP (1)–(3) with � = 1 and As-
sumption 1; and if the process {�2t − 1} obeys the functional CLT

(i) If 0¡�1¡�2¡ 1, then

�̂ ⇒ argmin
�∈[�1 ;�2]

4�2{B(�)− �B(1)}2
�(1− �)

;

where �2 = var(�2t ) and B(�) is a standard Brownian motion de ned as the limit of
�−1T−1=2 ∑�T

1 (�2t − 1).
(ii) If �1 = 0 and �2 = 1, then �̂

p→{0; 1}.

It can further be shown, following part (ii) of Theorem 4, that in the no break case
convergence to either endpoint is equally likely—that is the two probabilities are each
0.5. (That this is the case follows from noting that here the reversed series follows the
same process as the series in forward time)
Theorems 2–4 establish consistency under the unit root null �= 1. Straightforward

modi6cations to their proofs establish that our estimators are also consistent under the
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stationary alternative |�|¡ 1. In results not reported here we con6rmed the conclusions
of these theorems by simulating series of 1,000 observations with Gaussian innovations,
noting further that the conclusion of Theorem 4 for the no break case appears also to
apply to the QMLE estimator. The importance of these 6ndings in the no break case
is that a search for a break should be conducted over the entire range 06 �6 1.
This is particularly so, since our unit root test, developed in the following section, has
critical values that shift towards zero as �̂ moves further from 0.5. In consequence, any
trimming of the contemplated break interval is likely to lead to some loss in power of
the test.

4. Tests based on GLS

We now turn to a modi6cation of the Dickey–Fuller test, in circumstances where
a break in variance, possibly of an uncertain extent and at an unknown location,
has occurred. Perhaps a natural approach is through generalised least squares. How-
ever, we begin by showing that, even if the break date and two innovation vari-
ances are known, GLS generates a test statistic whose limiting null distribution still
depends on the two innovation variances. We next show how the procedure can
be amended to avoid this problem using the results of Perron (1989, 1990). Fi-
nally, a feasible procedure, employing the estimators of Section 3 is proposed and
assessed.

4.1. Standard GLS

In this subsection we demonstrate that a direct application of the standard GLS
does not deliver a desirable solution even when we know all the nuisance parameters
�∗; 1 and 2. This is because the asymptotic distribution of the t-statistic from the
standard GLS regression still depends on the nuisance parameters. It is suQcient for
this demonstration to consider just the case of no lagged changes, taking p=1 in (2).
The GLS-transformed representation of (4) is seen to be

ỹ t(�
∗) = �dt(�∗) + �ẏ t−1(�

∗) + �t ; (10)

where

ỹ t(�
∗) = −1

1 yt1[t6 �∗T ] + −1
2 yt1[t ¿ �∗T ];

dt(�∗) = −1
1 1[t6 �∗T ] + −1

2 1[t ¿ �∗T ];

ẏ t−1(�
∗) = −1

1 yt−11[t6 �∗T ] + −1
2 yt−11[t ¿ �∗T ]:

The GLS analogue of the Dickey–Fuller test tO is the t-ratio for testing � = 1 when
(10) is estimated by OLS. We denote this statistic as tG. The following lemma shows
that the asymptotic null distribution of tG depends on �∗; 1 and 2.
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Lemma 1. Under the DGP (1)–(3) with �= 1; p= 1; and Assumption 1;

tG ⇒ c
d1=2

;

where

c= (1=2){W (1)2 − 1} − �W (�∗){W (1)−W (�∗)}

−
{
−1
1

∫ �∗

0
W (r) dr + −1

2

∫ 1

�∗
W (r) dr − −1

2 (1− �∗)�W (�∗)

}

×[−1
1 W (�∗) + −1

2 {W (1)−W (�∗)}];

d=
∫ 1

0
W (r)2 dr − 2�W (�∗)

∫ 1

�
W (r) dr + �2(1− �∗)W (�∗)2

−
{
−1
1

∫ �∗

0
W (r) dr + −1

2

∫ 1

�∗
W (r) dr − −1

2 (1− �∗)�W (�∗)

}2

and

� = �−1(�− 1); �= 2=1:

The proof of this lemma is quite straightforward once we express ỹ t(�
∗) in the form

ỹ t(�
∗) = (� + z0)dt + wt − �w�∗T1[t ¿ �∗T ]; (11)

where wt =
∑t

i=1 �i. Furthermore, we may rewrite (11) as

ỹ t(�
∗) = ỹ t−1(�

∗) + c11[t = �∗T + 1] + �t ;

c1 =−�{(� + z0)−1
1 + w�∗T} (12)

which allows us to see heuristically why the asymptotic distribution of tG will depend
on �. This is caused by the presence at time �∗T+1 of the stochastic quantity −�w�∗T
of c1. This term is Op(T 1=2) and its eJect does not vanish asymptotically. Hence, a
straightforward GLS treatment of the usual Dickey–Fuller regression is inadequate, as
diJerent critical values would be required for each �. It is, therefore, necessary to
modify the GLS regression to allow for a change in level. We do this in the next
subsection. 3

3 We note that the same conclusion applies also in the case of a Dickey–Fuller regression with no intercept
or with intercept and trend, where the limiting distribution of the test statistic still depends on the magnitude
of any change in innovation variance.



374 T.-H. Kim et al. / Journal of Econometrics 109 (2002) 365–387

4.2. Feasible modi ed GLS

In view of (12) we are led to consider a modi6ed GLS-transformed regression.
We deal here with the more general generating process (1)–(3) for any 6nite
positive integer p. Consider the behaviour of ỹ t(�

∗), de6ned in the previous
subsection. Clearly we have, after adding

∑p−1
j=1 �jGyt−j to the right-hand

side of (4),

ỹ t(�
∗)

=




�−1
1 + �ỹ t−1(�

∗) +
p−1∑
j=1

�jGỹ t−j(�
∗) + �t ; t6 �∗T;

�−1
2 + �ỹ t−1(�

∗) +
p−1∑
j=1

�jGỹ t−j(�
∗) + �t ; t¿ �∗T + p+ 1:

(13)

The two regimes in (13) are identical except that their intercepts diJer. How-
ever, in the intermediate segment, t = �∗T + 1; : : : ; �∗T + p, the quantity ỹ t(�

∗) −
�ỹ t−1(�

∗) − ∑p−1
j=1 �jGỹ t−j(�

∗) − �t is stochastic, taking a diJerent value at each
time period, and so belongs to neither of the regimes in (13). This conclusion can
be summarised by introducing a one-time dummy variable and its lags to cover the
intermediate period. We can then write, incorporating also a dummy for the change
in intercept,

ỹ t(�
∗) = �0 + �1d1t(�∗) + �2d2t(�∗) +

p−1∑
j=1

'jd2; t−j(�∗)

+�ỹ t−1(�
∗) +

p−1∑
j=1

�jGỹ t−j(�
∗) + �t ; (14)

where

d1t(�∗) = 1[t ¿ �∗T ]; d2t(�∗) = 1[t = �∗T + 1]:

This speci6cation is precisely that of Perron (1990) in the case of a change in level of
the innovational outlier type, except that we require also lags of the one time dummy
when p¿ 1. This latter factor does not alter the limiting null distribution of unit root
test statistics as it implies in eJect simply the removal of a further (p−1) central data
points from the Perron speci6cation. Note that the need for one-time dummies here is
similar in spirit to the same need in the additive outlier model considered by Perron
and Vogelsang (1992).
As a practical matter, the true break and the standard deviations 1 and 2 will be

unknown. However, these can be consistently estimated through the procedures of the
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previous section, so that tests are based on the 6tted regression

ỹ t(�̂) = �̂0 + �̂1d1t(�̂) + �̂2d2t(�̂) +
p−1∑
j=1

'̂jd2; t−j(�̂)

+ �̂ỹ t−1(�̂) +
p−1∑
j=1

�̂jGỹ t−j(�̂) + �̂t ; (15)

where

ỹ t(�̂) = ̂−1
1 yt1[t6 �̂T ] + ̂−1

2 yt1[t ¿ �̂T ]:

Use of consistent estimators in place of unknown parameters will not aJect the
limiting null distribution of unit root test statistics, which remain as given by Perron
(1990). For this feasible procedure, let tF denote the t-ratio associated with the test
of the null hypothesis � = 1 when (15) is estimated by OLS. The following theorem
gives the limiting null distribution of this statistic.

Theorem 5. Under the DGP (1)–(3) with � = 1 and Assumption 1; given a break
fraction �∗ ∈ (0; 1);

tF ⇒ f(�∗)
g(�∗)1=2

where

f(�∗) = (1=2){W (1)2 − 1} − �∗−1W (�∗)
∫ �∗

0
W (r) dr

− (1− �∗)−1{W (1)−W (�∗)}
∫ 1

�∗
W (r) dr;

g(�∗) =
∫ 1

0
W (r)2 dr − �∗−1

{∫ �∗

0
W (r) dr

}2

− (1− �∗)−1

{∫ 1

�∗
W (r) dr

}2

:

The limit distribution is that given in Eq. (8) of Perron (1990) and depends only on
�∗, and not the innovation variances (21 ; 

2
2). Critical values of this limit distribution

are provided in Perron (1990), Table 4. One can thus base the test on Perron’s critical
values, which depend to some extent on �∗, but not on 2=1. Appropriate critical
values for our test are found by reference to the consistent estimator �̂ of �∗. When no
break occurs, as we saw in the previous section �̂ tends in probability to {0; 1}, so that
our test statistic tends to the same limiting distribution as the Dickey–Fuller statistic.

4.3. Monte Carlo simulation

In this section we consider the 6nite sample size and power properties of the test
tF . That is, we assume that �∗; 1 and 2 are unknown and need to be estimated.
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Table 1
Size of tF at nominal 0.05-level critical value, p = 1

� 1:00 0:80 0:60 0:40 0:25

(a) T = 100
�∗
0:20 0:050 0:061 0:068 0:063 0:063
0:40 — 0:054 0:052 0:055 0:054
0:60 — 0:047 0:047 0:055 0:056
0:80 — 0:045 0:043 0:050 0:053

(b) T = 200
�∗
0:20 0:048 0:060 0:061 0:056 0:056
0:40 — 0:052 0:048 0:050 0:052
0:60 — 0:048 0:049 0:055 0:055
0:80 — 0:046 0:049 0:051 0:053

Data were generated from the DGP (1)–(3) with standard normal �t , for values of
� chosen to match those used in Fig. 1. In estimating �∗, we report results only
for the QMLE estimator of Section 3. Results based on the LS estimator were very
similar, though here nominal and empirical sizes of unit root tests diJered a little
more. We searched the entire range 06 �6 1 of possible break fractions, which pro-
duces tests that are a little more powerful than if this interval is truncated. Finite
sample critical values of the test statistic for �∗ = 0:1(0:1)0:9 are given in Table 4
of Perron (1990), while corresponding values of the Dickey–Fuller statistic are appro-
priate for �∗ = {0; 1}. For any estimate �̂, we then interpolated between these
critical values.
We 6rst considered the simplest case, where lagged changes are not required in re-

gression (15); that is, p=1 is appropriately chosen. To verify that our statistic has the
correct size in particular cases, series of 100 and 200 observations were generated from
random walks with various break fractions �∗ and ratios of standard deviations �. Here
and in subsequent simulations, results are based on 5,000 replications. Empirical sizes
of our test statistic are given in Table 1 for nominal 0.05-level tests. Empirical and
nominal sizes are satisfactorily close. Table 2 reports powers of the same test when data
are generated by a 6rst order autoregression with �=0:8; 0:9 for T=100 and �=0:9; 0:95
for T = 200. As one would expect, power increases both with increasing sample size
and increasing distance from 1 of the autoregressive parameter. The test power de-
pends quite heavily on �, and to a lesser extent on �∗. The former follows from the
fact that, the larger is any break, the more precisely will the break fraction be estimated,
the latter may in part reUect the apparent relationship between test sizes and �∗ seen
in Table 1.
Although it can be seen from Table 1 that the statistic tF has the correct size when

there is no break in innovation variance (� = 1:00), there is necessarily some loss in
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Table 2
Power of tF at nominal 0.05-level critical value, p = 1

� 1:00 0:80 0:60 0:40 0:25

(a) T = 100
�∗
0:20 � = 0:90 0:256 0:267 0:279 0:340 0:465

� = 0:80 0:772 0:767 0:770 0:814 0:870
0:40 � = 0:90 — 0:243 0:249 0:280 0:387

� = 0:80 —- 0:742 0:710 0:752 0:826
0:60 � = 0:90 — 0:244 0:224 0:258 0:350

� = 0:80 — 0:746 0:710 0:749 0:813
0:80 � = 0:90 — 0:253 0:242 0:264 0:308

� = 0:80 — 0:760 0:752 0:784 0:834

(b) T = 200
�∗
0:20 � = 0:95 0:261 0:269 0:285 0:343 0:472

� = 0:90 0:770 0:763 0:768 0:816 0:871
0:40 � = 0:95 — 0:237 0:246 0:288 0:404

� = 0:90 — 0:719 0:710 0:763 0:831
0:60 � = 0:95 — 0:236 0:239 0:274 0:369

� = 0:90 — 0:718 0:705 0:754 0:826
0:80 � = 0:95 — 0:254 0:263 0:280 0:322

� = 0:90 — 0:749 0:748 0:796 0:844

power compared with the usual Dickey–Fuller test, which would be appropriate in this
case. For example, we found for the latter with T =100 and �=0:8 power to be 0.862.
This is of course to be expected as tF is not constructed with optimality in this situation
foremost in mind, but from consideration of size robustness under an unknown break in
innovation variance. Its gain over the Dickey–Fuller test in size reliability under such
a break far outweighs the modest sacri6ce in power when there is no break—that is,
it seems well worth accepting slightly diminished power for the avoidance of spurious
rejections.
Tables 3 and 4 report on the case where a lagged diJerence is included in the 6tted

model, so that p=2 in (15). For Table 3, the generating model was the ARIMA(1; 1; 0)
process

Gyt = 0:7Gyt−1 + �t

with break speci6cations exactly as in the previous two tables. Again our test
appears to exhibit good size reliability. The generating process for Table 4 is the
same 6rst order autoregression as for Table 2. Unsurprisingly, we note a small
drop in power when the augmented variant of the test is
employed.
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Table 3
Size of tF at nominal 0.05-level critical value, p = 2

� 1:00 0:80 0:60 0:40 0:25

(a) T = 100
�∗
0:20 0:048 0:063 0:068 0:062 0:058
0:40 — 0:056 0:061 0:063 0:060
0:60 — 0:049 0:053 0:058 0:061
0:80 — 0:046 0:048 0:048 0:049

(b) T = 200
�∗
0:20 0:051 0:060 0:058 0:058 0:056
0:40 — 0:052 0:051 0:054 0:051
0:60 — 0:045 0:050 0:056 0:055
0:80 — 0:046 0:051 0:054 0:054

Table 4
Power of tF at nominal 0.05-level critical value, p = 2

� 1:00 0:80 0:60 0:40 0:25

(a) T = 100
�∗
0:20 � = 0:90 0:229 0:241 0:255 0:300 0:428

� = 0:80 0:653 0:636 0:646 0:701 0:781
0:40 � = 0:90 — 0:224 0:225 0:249 0:338

� = 0:80 — 0:617 0:602 0:640 0:721
0:60 � = 0:90 — 0:223 0:203 0:227 0:290

� = 0:80 — 0:614 0:593 0:631 0:702
0:80 � = 0:90 — 0:218 0:207 0:226 0:265

� = 0:80 — 0:635 0:617 0:647 0:707

(b) T = 200
�∗
0:20 � = 0:95 0:240 0:246 0:267 0:315 0:423

� = 0:90 0:703 0:700 0:708 0:757 0:824
0:40 � = 0:95 — 0:223 0:220 0:262 0:377

� = 0:90 — 0:638 0:624 0:683 0:774
0:60 � = 0:95 — 0:213 0:212 0:245 0:328

� = 0:90 — 0:644 0:637 0:678 0:771
0:80 � = 0:95 — 0:225 0:228 0:257 0:303

� = 0:90 — 0:676 0:689 0:724 0:786

5. The linear trend case

As it stands, the test tF is invariant to � for �6 1. However, in practice, we often
require invariance to a linear trend. We therefore consider a second test statistic, which
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we denote ttF . In the contemplated data-generating process, (1) is replaced by

yt = � + +t + zt ; t = 1; : : : ; T;

while retaining (2) and (3). In the case where �= 1 and p= 1, we may show that

ỹ t(�
∗) = c2 + ỹ t−1(�

∗) + c31[t = �∗T + 1] + c41[t ¿ �∗T ] + �t ;

c2 = +−1
1 ;

c3 =−�{w�∗T + −1
1 (� + z0 + +�∗T )};

c4 =−+−1
1 �

which demonstrates the need to allow now for a change in drift in addition to a change
in level.
Thus, following through the same argument as in Section 4.2, the two right-hand ex-

pressions in (13) need to be augmented to allow for a change in slope as well as inter-
cept. Thus, following the addition to the right-hand side of (4) of ,t+

∑p−1
j=1 �jGyt−j,

the terms ,−1
i t (i=1; 2) are added to the respective right-hand side expressions in (13).

The argument for the inclusion of a one-time dummy and its lags remains unchanged,
so that in place of (15) the 6tted test regression is

ỹ t(�̂) = �̂0 + �̂1d1t(�̂) + �̂2d2t(�̂) + �̂3d3t(�̂) + �̂4t +
p−1∑
j=1

'̂jd2; t−j(�̂)

+ �̂ỹ t−1(�̂) +
p−1∑
j=1

�̂jGỹ t−j(�̂) + �̂t

where

d3t(�∗) = (t − �∗T )1[t ¿ �∗T ]:

Here, the unknown break fraction �∗ can be consistently estimated by the two proce-
dures discussed in Section 3, with the obvious modi6cation that a term ,̂t is added to
the right-hand side of (7). The statistic ttF is then the usual t-ratio for testing � = 1.
Apart from the lagged one time dummies, whose necessary inclusion again does not
aJect the limiting null distribution, the set-up here is precisely that of the “Model (C)”
unit root test of Perron (1989). The limiting null distribution is given in Theorem 2
of that paper, and critical values of that distribution are given there in Table VI.B.
In Tables 5 and 6, we investigate 6nite sample size and power of this test for

samples of 100 and 200 observations. Our approach is precisely as in Tables 1 and
2 of Section 4.3, the data-generating processes being exactly as there. We simulated
6nite sample critical values of Perron statistics for �∗=0:1(0:1)0:9, rather than using the
asymptotic values, and again used the Dickey–Fuller (now with trend) critical values
for �∗ = {0; 1}. Table 5 suggests that our test has quite good size properties, while
comparison of Table 6 with Table 2 indicates, as is generally found with Dickey–
Fuller-type tests, a substantial fall in power when a linear trend term is included.
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Table 5
Size of ttF at nominal 0.05-level critical value, p = 1

� 1:00 0:80 0:60 0:40 0:25

(a) T = 100
�∗
0:20 0:044 0:044 0:050 0:051 0:055
0:40 — 0:041 0:041 0:047 0:050
0:60 — 0:040 0:043 0:047 0:051
0:80 — 0:038 0:037 0:040 0:041

(b) T = 200
�∗
0:20 0:050 0:056 0:050 0:051 0:053
0:40 — 0:048 0:048 0:050 0:051
0:60 — 0:046 0:045 0:049 0:050
0:80 — 0:044 0:046 0:048 0:049

Table 6
Power of ttF at nominal 0.05-level critical value, p = 1

� 1:00 0:80 0:60 0:40 0:25

(a) T = 100
�∗
0:20 � = 0:90 0:141 0:145 0:136 0:137 0:183

� = 0:80 0:505 0:494 0:490 0:525 0:560
0:40 � = 0:90 — 0:130 0:119 0:123 0:140

� = 0:80 — 0:461 0:404 0:428 0:503
0:60 � = 0:90 — 0:126 0:111 0:115 0:127

� = 0:80 — 0:466 0:400 0:412 0:460
0:80 � = 0:90 — 0:123 0:116 0:126 0:137

� = 0:80 — 0:470 0:442 0:464 0:478

(b) T = 200
�∗
0:20 � = 0:95 0:156 0:143 0:134 0:146 0:172

� = 0:90 0:483 0:482 0:458 0:481 0:558
0:40 � = 0:95 — 0:130 0:111 0:127 0:142

� = 0:90 — 0:419 0:368 0:400 0:475
0:60 � = 0:95 — 0:126 0:107 0:118 0:120

� = 0:90 — 0:408 0:366 0:385 0:442
0:80 � = 0:95 — 0:135 0:123 0:134 0:138

� = 0:90 — 0:452 0:448 0:463 0:477

6. Conclusion

We have seen that, in the presence of a decrease in innovation variance, Dickey–
Fuller tests for unit roots can lead to serious spurious rejections of the null hypothesis.
We propose instead tests based on the prior estimation of the break point, if such a
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point exist, and of the variances of the innovations of the two parts of the series. These
estimates are then employed in modi6ed variants of the tests of Perron (1989, 1990) for
unit roots in the presence of changes in mean or trend. Simulation evidence indicates
that our tests have good size and power properties in conventionally employed sample
sizes.
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Appendix A. Proofs of Theorems

Proof of Theorem 1. First; note that yt can be written in the form

yt = 1wt1[t6 �∗T ] + (2wt − ,w�∗T )1[t ¿ �∗T ];

where ,= 2 − 1 and wt =
∑t

i=1 �i. Also; tO can be written as

tO =
T−1 ∑T

t=2 (yt−1 − Xy)�t
̂{T−2

∑T
t=2 (yt−1 − Xy)2}1=2 :

Dealing with the numerator term 6rst; we have

T−1
T∑
2

(yt−1 − Xy)�t = T−1
T∑
2

yt−1�t − T−1=2 XyT−1=2
T∑
2

�t

and using the above representation for yt; we 6nd that

T−1
T∑
2

yt−1�t = 21T
−1

T∑
2

wt−1�t + (22 − 21)T
−1

T∑
�∗T+2

wt−1�t

−2,T−1=2w�∗TT−1=2(wT − w�∗T+1) + op(1)

where

T−1
T∑
2

wt−1�t ⇒ 1
2
{W (1)2 − 1};

T−1
T∑

�∗T+2

wt−1�t ⇒ 1
2
{W (1)2 −W (�∗)2 − (1− �∗)};

T−1=2w�∗TT−1=2(wT − w�∗T+1) ⇒ W (�∗){W (1)−W (�∗)}:
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Next;

T−1=2 Xy = 1T−3=2
T∑
1

wt + ,T−3=2
T∑

�∗T+1

wt − ,(1− �∗)T−1=2w�∗T ;

where

T−3=2
T∑
1

wt ⇒
∫ 1

0
W (r) dr; T−3=2

T∑
�∗T+1

wt ⇒
∫ 1

�∗
W (r) dr;

T−1=2w�∗T ⇒ W (�∗)

and

T−1=2
T∑
2

�t = 1T−1=2wT + ,T−1=2(wT − w�∗T );

where

T−1=2wT ⇒ W (1); T−1=2(wT − w�∗T ) ⇒ W (1)−W (�∗):

Gathering together these results then shows that

T−1
T∑
2

(yt−1 − Xy)�t ⇒ 21a(�; �
∗): (A.1)

Using a similar argument; we have

T−2
T∑
2

(yt−1 − Xy)2 ⇒ 21b(�; �
∗): (A.2)

Finally; it is straightforward to show that

̂2 = T−1
T∑
t=1

�2t + op(1)

= 21T
−1

T∑
1

�2t + (22 − 21)(1− �∗){(1− �∗)T}−1
T∑

�∗T+1

�2t

⇒ �∗21 + (1− �∗)22 : (A.3)

Combining (A.1)–(A.3) gives the result in (5).

Proof of Theorem 2. First; we derive the probability limit of ̂1(�)2. We de6ne Xt =
[1; yt−1;Gyt−1; : : : ;Gyt−p+1]′; .̂=[�̂; �̂; �̂1; : : : ; �̂p−1]

′ and .=[0; 1; �1; : : : ; �p−1]′. Then;
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̂1(�)2 can be expressed as

̂1(�)2 = (�T )−1
�T∑
t=1

�2t − 2(�T )−1{DT (.̂− .)}′D−1
T

�T∑
t=1

Xt�t

+(�T )−1{DT (.̂− .)}′D−1
T

�T∑
t=1

XtX ′
t D

−1
T {DT (.̂− .)}

= (�T )−1
�T∑
t=1

�2t + op(1);

where DT = diag(T 1=2; T; T 1=2; : : : ; T 1=2). The last equality is due to the facts that D−1
T∑�T

t=1 Xt�t =Op(1); D−1
T

∑�T
t=1 XtX

′
t D

−1
T =Op(1) and DT (.̂− .) = Op(1). We consider

two cases: when �6 �∗; we have

(�T )−1
�T∑
t=1

�2t ⇒ 21

and for the other case �¿�∗; the limit is

(�T )−1
�T∑
t=1

�2t ⇒
�∗

�
21 +

�− �∗

�
22 :

Therefore; we have

̂1(�)2 ⇒ 211[�6 �∗] +
(
�∗

�
21 +

�− �∗

�
22

)
1[�¿�∗]:

The same kind of argument can be used to show that

̂2(�)2 ⇒
(
�∗ − �
1− �

21 +
1− �∗

1− �
22

)
1[�6 �∗] + 221[�¿�∗]:

Given the functional form of Q̂T (�) = � ln ̂1(�)2 + (1 − �) ln ̂2(�)2, we have the
following uniform convergence result:

Q̂T (�) ⇒ Q(�);

where the limit function Q(�) is a non-random function given by

Q(�) =
[
� ln (21) + (1− �) ln

{
�∗ − �
1− �

21 +
1− �∗

1− �
22

}]
1[�6 �∗]

+
[
� ln

{
�∗

�
21 +

�− �∗

�
22

}
+ (1− �) ln (22)

]
1[�¿�∗]:
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In order to use a similar argument to that of Theorem 3.4 in White (1996), we
only need to show that the non-random limit function Q(�) is minimised at the true
break point �∗. We consider the case: �6 �∗ and we want to show that for any
�∈ (0; �∗); Q(�) − Q(�∗)¿ 0. Using some basic algebra, one can show that Q(�) −
Q(�∗)¿ 0 if and only if

!+ (1− !)
(
22
21

)
¿ 1!

(
22
21

)(1−!)

;

where !=(�∗−�)=(1−�). The latter is the inequality between the weighted arithmetic
mean and the weighted geometric mean of 1 and 22=

2
1 and the equality holds only

when 1 = 22=
2
1. The same argument can be used for the other case: �¿�∗. Hence,

as long as there is a break in innovation variance, the strict inequality holds and we
have the required result:

�̂− �∗ = op(1): (A.4)

In order to prove the other two results, we note that

̂1(�∗)2 ⇒ 21 ; ̂2(�∗)2 ⇒ 22 :

This uniform convergence together with the result in (A.4) implies that ̂1(�̂)2 and
̂2(�̂)2 converge to 21 and 22 in probability.

Proof of Theorem 3. Given the results from Theorem 2 on the limits of ̂1(�)2 and
̂2(�)2; it is now easy to show that the limit of the objective function V̂ T (�)2 is given
by

V̂ T (�)2 ⇒ V (�)2;

where

V (�)2 = (22 − 21)
�

1− �
(1− �∗)1[�6 �∗] + (22 − 21)

1− �
�

�∗21[�¿�∗]:

Using the fact that (�=(1−�))((1−�)=�) is a monotone increasing (decreasing) function;
it is easy to show that the non-random limit function V (�) is maximised at the true
break point �∗. Hence; we have the required result: �̂− �∗ = op(1) which also implies
that ̂1(�̂)2 and ̂2(�̂)2 converge to 21 and 22 in probability.

Proof of Theorem 4. First; we assume that 0¡�1¡�2¡ 1. Note that it can be shown
that

T 1=2V̂ T (�) =
1

{�(1− �)}1=2
{
�

1
T 1=2

T∑
t=1

(e2t − 2)− 1
T 1=2

�T∑
t=1

(e2t − 2)

}
;
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where 2 = 21 = 22 is the common innovation variance. We consider the partial sum:

1
T 1=2

�T∑
t=1

(e2t − 2) =
1
T 1=2

�T∑
t=1

(�2t − 2)− 2
1
T 1=2 {DT (.̂− .)}′D−1

T

�T∑
t=1

Xt�t

+
1
T 1=2 {DT (.̂− .)}′D−1

T

�T∑
t=1

XtX ′
t D

−1
T {DT (.̂− .)}

= 2
1
T 1=2

�T∑
t=1

(�2t − 1) + op(1) ⇒ 2�B(�):

Applying the above result; we obtain

T 1=2V̂ T (�) ⇒ 2�{�B(1)− B(�)}
{�(1− �)}1=2 :

Since

�̂= argmax
�∈[�1 ;�2]

{T 1=2V̂ T (�)}2

we have by the continuous mapping theorem

�̂ ⇒ argmax
�∈[�1 ;�2]

4�2{B(�)− �B(1)}2
�(1− �)

which completes the proof of the 6rst part of the theorem.

The second part of the theorem follows from Corollary 1 in Andrews (1993). Using
the 6rst part of the theorem, together with the law of the iterated logarithm for Brown-
ian motion it can be shown that max�∈[0;1] TV̂ T (�)2 ⇒ ∞. Since max�∈[�1 ;�2] TV̂ T (�)2=
Op(1) for 0¡�1¡�2¡ 1, these results together imply that �̂

p→{0; 1}.

Proof of Theorem 5. Suppose we know all the nuisance parameters �∗; 21 and 22. In
this case; the speci6cation in (14) can be directly estimated. Let tF{�∗ ;1 ;2} denote the
t-ratio for testing � = 1 when (14) is estimated by OLS. Then; by a straightforward
application of the arguments in Perron (1990); we have

tF{�∗ ;1 ;2} ⇒ f(�∗)
g(�∗)1=2

:

This is because the speci6cation is the same as given in Perron (1990); except that there
are additional lagged one-time dummy variables whose role is essentially to remove
(p − 1) central observations. Next; we assume that �∗ is known; but 21 and 22 are
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unknown. In this case; we run the following regression:

Yy t(�
∗) = �̂0 + �̂1d1t(�∗) + �̂2d2t(�∗) +

p−1∑
j=1

'̂jd2; t−j(�∗)

+ �̂ Yy t−1(�
∗) +

p−1∑
j=1

�̂jG Yy t−j(�
∗) + �̂t ; (A.5)

where

Yy t(�
∗) = ̂1(�∗)−1yt1[t6 �∗T ] + ̂2(�∗)−1yt1[t ¿ �∗T ]

and ̂1(�∗)2 and ̂2(�∗)2 are de6ned as in (9) with �∗ in place of �̂. Letting
tF{�∗ ; ̂1(�∗);̂2(�∗)} denote the t-ratio for testing �= 1 when (A.5) is estimated by OLS;
we have the following result

tF{�∗ ; ̂1(�∗);̂2(�∗)} ⇒ f(�∗)
g(�∗)1=2

: (A.6)

All the terms in tF{�∗ ; ̂1(�∗);̂2(�∗)} are exactly the same as in tF{�∗ ;1 ;2} except that
they are multiplied by 21̂1(�

∗)−2 or 22̂2(�
∗)−2 depending on which subsample they

belong to. Therefore; result (A.6) easily follows from the fact that 21̂1(�
∗)−2 ⇒

1; 22̂2(�
∗)−2 ⇒ 1. Then; the claim in Theorem 5; where tF = tF{�̂; ̂1(�̂);̂2(�̂)}; follows

from the uniform convergence result in (A.6) and the consistency result of �̂ in Section
3.
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